“INNOVATION DISTINGUISHES BETWEEN A LEADER AND A FOLLOWER.”

-Steve Jobs, Apple, Inc.
INNOVATION is the cornerstone of economic growth and success, for both the companies that innovate and the countries that embrace them.

For the past several years, talk about innovation has permeated news stories, corporate board rooms and government forums. No wonder the term “innovation” has become a buzz word of the 21st century, especially as companies and nations grapple with a shifting global economy, financial crises of unprecedented proportions and a desire to create the next era of opportunity for future generations.

These factors, in conjunction with the awareness at Thomson Reuters of the powerful insights that can be gleaned from studying patent information, prompted us to seize the moment and develop a program that measures innovation from an unbiased and scientific perspective.

Patent activity has always been an indicator of innovation. However, innovation comprises much more than mere patent filing volume. As such, we developed a range of metrics based on various facets of innovation that relate to patenting and science. The Thomson Reuters 2011 Top 100 Global Innovators are companies that invent on a significant scale; are working on developments which are acknowledged as innovative by patent offices across the world, and by their peers; and, whose inventions are so important that they seek global protection for them.

This award acknowledges innovation in its purest form. Being recognized as a Top 100 Global Innovator is a prestigious distinction. It confirms an organization’s commitment to progressing innovation globally, to the protection of ideas and to the commercialization of inventions.

Thomson Reuters Top 100 Global Innovators are the world leaders in innovation.
The methodology used to determine the 2011 Top 100 Global Innovators was developed by Thomson Reuters and approved by several IP-savvy, external organizations. While the final methodology is proprietary, we recognize the need for a deeper explanation of how the list was compiled.

The following is a closer look at the data used and how it was calculated and analyzed. Thomson Reuters Derwent World Patents Index®, Derwent Patents Citation Index®, Quadrilateral Patent Index™, and Thomson Innovation®, the IP intelligence and collaboration platform, were utilized in our research and analysis. Comparative analysis was done using the Thomson Reuters Eikon platform, the single source for financial professionals to turn information into action.

The criteria for the Top 100 Global Innovator award are:

1: SUCCESS
Patenting an invention through one or more patent offices is expensive. Not all patent applications pass through the examination process and are granted. The success metric measures the ratio of published applications (those patents which are filed and publicly published by the patent office but not yet granted) to granted patents over the most recent three years.

2: GLOBAL
Protecting an invention in major world markets is an indication of the significant value a company places on its intellectual property. The number of “innovative” patents that have quadrilateral patents in their patent families, according to the Thomson Reuters Quadrilateral Patent Index, was calculated to create a ratio that shows which companies place a high value on their portfolios in major world markets. The quadrilateral patent authorities is comprised of the Chinese Patent Office, the European Patent Office, the Japanese Patent Office and the United States Patent and Trademark Office.

3: INFLUENCE
The impact of an invention “down the line” can be determined by looking at how often it is subsequently cited by other companies in their inventions. Through the Thomson Reuters Derwent Patents Citation Index database, we counted citations to each organizations’ patents over the most recent five years, excluding self-citations, and put a weighted value on this measurement of 50%.

4: VOLUME
This award focuses on companies that are responsible for generating a sizeable amount of innovation. All organizations with 100 or more “innovative” patents from the most recent three years were included in our analysis. An “innovative” patent is defined as the first publication in a patent document of a new technology, drug, business process, etc. In DWPI, these are called “basic” patents. DWPI provides a record of patents published by nearly 50 patent issuing authorities worldwide to enable a comprehensive picture of the innovation landscape. Subsequent filings for the same invention are recorded as “equivalents” in DWPI and collated in “patent families” and, for this analysis, were not included.

“Innovation is the primary source of economic growth, job creation and competitiveness in today’s global economy. An efficiently operating intellectual property system is critical to our ability to spur innovation and bring new services and products to the marketplace faster.”

—Barack Obama, President, United States of America on the America Invents Act
Thomson Reuters Top 100 Global Innovator companies are truly the world leaders of innovation and economic growth. A statement made about the recently signed America Invents Act can be applied globally with its proclamation that “Innovation is the primary source of economic growth, job creation and competitiveness in today’s global economy. An efficiently operating intellectual property system is critical to our ability to spur innovation and bring new services and products to the marketplace faster. For investors, patents are strong indicators of market potential for new companies; and for inventors, they are often vital to attracting investment.”1

Using our proprietary data and analysis tools, coupled with the expertise of our IP Consulting Services team, we confirmed the value the Top 100 Global Innovators deliver to their shareholders, employees and the nations in which they reside:

• Top 100 Global Innovator companies added over 400,000 new jobs in 2010, a greater percent increase over 2009 than was experienced by the S&P 500
• The Market Cap Weighted Average revenue of the Top 100 Global Innovators increased by 12.9 percent, more than five percent more than the S&P 500 for the same period (2010 vs. 2009)
• Top 100 Global Innovator companies more than doubled the R&D spend of their S&P 500 counterparts
• 74.2 percent of the publicly-traded top 100 innovator companies had an increase in stock price year over year

Other key findings include:

• The United States leads the world in Semiconductor & Electronic Component Manufacturing
• Asia leads the world in Computer Hardware Manufacturing and Automotive Manufacturing
• Europe leads the world in Machinery Manufacturing and has more than half of the Top 100 Global Innovators in this category in Sweden
• France leads the world in Scientific Research and is the European nation with the most companies represented in the list

These and other findings are spelled out in more detail later in this report.

These points underscore the value for recipients of being a Thomson Reuters Top 100 Global Innovator. This designation proves that companies that invest in innovation, and protect and enforce their intellectual assets, are significantly more likely to contribute to economic growth, both within their organizations and the nations in which they reside.

1 America Invents Act, commerce.gov, September 16, 2011
INTRODUCING THE THOMSON REUTERS
TOP 100 GLOBAL INNOVATORS

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>COUNTRY</th>
<th>INDUSTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M Company</td>
<td>USA</td>
<td>Chemical Manufacturing</td>
</tr>
<tr>
<td>ABB, Ltd.</td>
<td>Switzerland</td>
<td>Electrical Products Manufacturing</td>
</tr>
<tr>
<td>Advanced Micro Devices, Inc.</td>
<td>USA</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>Airbus</td>
<td>France</td>
<td>Aerospace Manufacturing</td>
</tr>
<tr>
<td>Alcatel-Lucent</td>
<td>France</td>
<td>Telecommunication Equipment Manufacturing</td>
</tr>
<tr>
<td>Alcon, Inc.</td>
<td>USA</td>
<td>Healthcare Product Manufacturing</td>
</tr>
<tr>
<td>Alfa Laval</td>
<td>Sweden</td>
<td>Machinery Manufacturing</td>
</tr>
<tr>
<td>Analog Devices, Inc.</td>
<td>USA</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>Apple, Inc.</td>
<td>USA</td>
<td>Telecommunication Equipment Manufacturing</td>
</tr>
<tr>
<td>Applied Materials, Inc.</td>
<td>USA</td>
<td>Machinery Manufacturing</td>
</tr>
<tr>
<td>Arkema</td>
<td>France</td>
<td>Chemical Manufacturing</td>
</tr>
<tr>
<td>ASML</td>
<td>Netherlands</td>
<td>Machinery Manufacturing</td>
</tr>
<tr>
<td>Atlas Copco</td>
<td>Sweden</td>
<td>Machinery Manufacturing</td>
</tr>
<tr>
<td>Avaya, Inc.</td>
<td>USA</td>
<td>Telecommunication Equipment Manufacturing</td>
</tr>
<tr>
<td>BASF</td>
<td>Germany</td>
<td>Chemical Manufacturing</td>
</tr>
<tr>
<td>Bayer</td>
<td>Germany</td>
<td>Pharmaceutical Manufacturing</td>
</tr>
<tr>
<td>Boeing</td>
<td>USA</td>
<td>Aerospace Manufacturing</td>
</tr>
<tr>
<td>Bristol-Myers Squibb Company</td>
<td>USA</td>
<td>Pharmaceutical Manufacturing</td>
</tr>
<tr>
<td>Brother Industries, Ltd.</td>
<td>Japan</td>
<td>Computer Hardware Manufacturing</td>
</tr>
<tr>
<td>Canon Inc.</td>
<td>Japan</td>
<td>Computer Hardware Manufacturing</td>
</tr>
<tr>
<td>Cheil Industries, Inc.</td>
<td>S. Korea</td>
<td>Chemical Manufacturing</td>
</tr>
<tr>
<td>Chevron U.S.A. Inc.</td>
<td>USA</td>
<td>Chemical Manufacturing</td>
</tr>
<tr>
<td>CNRS, The French National Center for Scientific Research</td>
<td>France</td>
<td>Scientific Research</td>
</tr>
<tr>
<td>Commissariat à l'énergie atomique</td>
<td>France</td>
<td>Scientific Research</td>
</tr>
<tr>
<td>Corning Incorporated</td>
<td>USA</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>Daikin Industries, Ltd.</td>
<td>Japan</td>
<td>Industrial Manufacturing</td>
</tr>
<tr>
<td>Denso Corporation</td>
<td>Japan</td>
<td>Transportation Equipment Manufacturing</td>
</tr>
<tr>
<td>Dow Chemical Company</td>
<td>USA</td>
<td>Chemical Manufacturing</td>
</tr>
<tr>
<td>DuPont</td>
<td>USA</td>
<td>Chemical Manufacturing</td>
</tr>
</tbody>
</table>
THE TOP 100 GLOBAL INNOVATORS

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>COUNTRY</th>
<th>INDUSTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaton Corporation</td>
<td>USA</td>
<td>Electrical Products Manufacturing</td>
</tr>
<tr>
<td>Ericsson</td>
<td>Sweden</td>
<td>Telecommunication Equipment</td>
</tr>
<tr>
<td>Ethicon Inc.</td>
<td>USA</td>
<td>Healthcare Product Manufacturing</td>
</tr>
<tr>
<td>Exxon Mobil Corporation</td>
<td>USA</td>
<td>Petroleum Manufacturing</td>
</tr>
<tr>
<td>Fanuc Ltd.</td>
<td>Japan</td>
<td>Electrical Products Manufacturing</td>
</tr>
<tr>
<td>Fujitsu Limited</td>
<td>Japan</td>
<td>Computer Hardware Manufacturing</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>USA</td>
<td>Consumer Products Manufacturing</td>
</tr>
<tr>
<td>Goodyear Tire & Rubber Company</td>
<td>USA</td>
<td>Industrial Manufacturing</td>
</tr>
<tr>
<td>Hamilton Sundstrand Corporation</td>
<td>USA</td>
<td>Aerospace Manufacturing</td>
</tr>
<tr>
<td>Harris Corporation</td>
<td>USA</td>
<td>Telecommunication Equipment</td>
</tr>
<tr>
<td>Hewlett-Packard Company</td>
<td>USA</td>
<td>Computer Hardware Manufacturing</td>
</tr>
<tr>
<td>Hilti Corporation</td>
<td>Liechtenstein</td>
<td>Machinery Manufacturing</td>
</tr>
<tr>
<td>Hitachi, Ltd.</td>
<td>Japan</td>
<td>Computer Hardware Manufacturing</td>
</tr>
<tr>
<td>Hoffmann La Roche</td>
<td>USA</td>
<td>Healthcare Product Manufacturing</td>
</tr>
<tr>
<td>Honda Motor Company Ltd.</td>
<td>Japan</td>
<td>Automotive Manufacturing</td>
</tr>
<tr>
<td>Honeywell International Inc.</td>
<td>USA</td>
<td>Electrical Products Manufacturing</td>
</tr>
<tr>
<td>IFP Energies Nouvelles</td>
<td>France</td>
<td>Scientific Research</td>
</tr>
<tr>
<td>Intel Corporation</td>
<td>USA</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>International Business Machines Corporation</td>
<td>USA</td>
<td>Computer Hardware Manufacturing</td>
</tr>
<tr>
<td>Japan Aviation Electronics Industry, Ltd.</td>
<td>Japan</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>Konami Digital Entertainment Co., Ltd.</td>
<td>Japan</td>
<td>Computer Software Manufacturing</td>
</tr>
<tr>
<td>LG Electronics Inc.</td>
<td>S. Korea</td>
<td>Consumer Products Manufacturing</td>
</tr>
<tr>
<td>L’Oréal</td>
<td>France</td>
<td>Consumer Products Manufacturing</td>
</tr>
<tr>
<td>LS Industrial Systems</td>
<td>S. Korea</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>LSI Corporation</td>
<td>USA</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>Microsoft Corporation</td>
<td>USA</td>
<td>Computer Software Manufacturing</td>
</tr>
<tr>
<td>Mitsubishi Electric Corporation</td>
<td>Japan</td>
<td>Machinery Manufacturing</td>
</tr>
<tr>
<td>Motorola, Inc.</td>
<td>USA</td>
<td>Telecommunication Equipment</td>
</tr>
</tbody>
</table>

top100innovators.com 7
THE TOP 100 GLOBAL INNOVATORS

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>COUNTRY</th>
<th>INDUSTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murata Manufacturing Co., Ltd.</td>
<td>Japan</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>NCR Corporation</td>
<td>USA</td>
<td>Computer Hardware Manufacturing</td>
</tr>
<tr>
<td>NEC Corporation</td>
<td>Japan</td>
<td>Computer Hardware Manufacturing</td>
</tr>
<tr>
<td>Nippon Telegraph and Telephone Corporation</td>
<td>Japan</td>
<td>Telecommunication Equipment Manufacturing</td>
</tr>
<tr>
<td>Nitto Denko Corporation</td>
<td>Japan</td>
<td>Chemical Manufacturing</td>
</tr>
<tr>
<td>Olympus Optical</td>
<td>Japan</td>
<td>Healthcare Product Manufacturing</td>
</tr>
<tr>
<td>Panasonic Corporation</td>
<td>Japan</td>
<td>Consumer Products Manufacturing</td>
</tr>
<tr>
<td>Philps</td>
<td>Netherlands</td>
<td>Consumer Products Manufacturing</td>
</tr>
<tr>
<td>Procter & Gamble Company</td>
<td>USA</td>
<td>Consumer Products Manufacturing</td>
</tr>
<tr>
<td>Qualcomm Incorporated</td>
<td>USA</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>Raytheon Company</td>
<td>USA</td>
<td>Transportation Equipment Manufacturing</td>
</tr>
<tr>
<td>Rhodia Operations</td>
<td>France</td>
<td>Chemical Manufacturing</td>
</tr>
<tr>
<td>Rockwell Automation, Inc.</td>
<td>USA</td>
<td>Electrical Products Manufacturing</td>
</tr>
<tr>
<td>Rohm and Haas Company</td>
<td>USA</td>
<td>Chemical Manufacturing</td>
</tr>
<tr>
<td>Rosemount Inc.</td>
<td>USA</td>
<td>Machinery Manufacturing</td>
</tr>
<tr>
<td>Royal Dutch Shell</td>
<td>Netherlands</td>
<td>Petroleum Manufacturing</td>
</tr>
<tr>
<td>Saint-Gobain</td>
<td>France</td>
<td>Industrial Manufacturing</td>
</tr>
<tr>
<td>Samsung Electronics Co., Ltd.</td>
<td>S. Korea</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>SanDisk Corporation</td>
<td>USA</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>Sandvik Intellectual Property AB</td>
<td>Sweden</td>
<td>Machinery Manufacturing</td>
</tr>
<tr>
<td>Scania</td>
<td>Sweden</td>
<td>Transportation Equipment Manufacturing</td>
</tr>
<tr>
<td>Seiko Epson Corporation</td>
<td>Japan</td>
<td>Computer Hardware Manufacturing</td>
</tr>
<tr>
<td>Semiconductor Energy Laboratory Co., Ltd.</td>
<td>Japan</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>Sharp Corporation</td>
<td>Japan</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>Shin-Etsu Chemical Co., Ltd.</td>
<td>Japan</td>
<td>Chemical Manufacturing</td>
</tr>
<tr>
<td>Siemens</td>
<td>Germany</td>
<td>Electrical Products Manufacturing</td>
</tr>
<tr>
<td>Sncema</td>
<td>France</td>
<td>Transportation Equipment Manufacturing</td>
</tr>
<tr>
<td>Societe De Technologie Michelin</td>
<td>France</td>
<td>Industrial Manufacturing</td>
</tr>
<tr>
<td>Sony Corporation</td>
<td>Japan</td>
<td>Consumer Products Manufacturing</td>
</tr>
</tbody>
</table>
THE TOP 100 GLOBAL INNOVATORS

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>COUNTRY</th>
<th>INDUSTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumitomo Electric Industries Ltd.</td>
<td>Japan</td>
<td>Transportation Equipment Manufacturing</td>
</tr>
<tr>
<td>Sumitomo Rubber Industries, Ltd.</td>
<td>Japan</td>
<td>Industrial Manufacturing</td>
</tr>
<tr>
<td>Symantec Corporation</td>
<td>USA</td>
<td>Computer Software Manufacturing</td>
</tr>
<tr>
<td>Synopsys, Inc.</td>
<td>USA</td>
<td>Computer Software Manufacturing</td>
</tr>
<tr>
<td>TE Connectivity</td>
<td>Switzerland</td>
<td>Semiconductor & Electronic Component Manufacturing</td>
</tr>
<tr>
<td>Tetra Laval</td>
<td>Switzerland</td>
<td>Industrial Manufacturing</td>
</tr>
<tr>
<td>Toshiba Corporation</td>
<td>Japan</td>
<td>Computer Hardware Manufacturing</td>
</tr>
<tr>
<td>Toyota Motor Corporation</td>
<td>Japan</td>
<td>Automotive Manufacturing</td>
</tr>
<tr>
<td>Unilever</td>
<td>Netherlands/UK</td>
<td>Consumer Products Manufacturing</td>
</tr>
<tr>
<td>UOP</td>
<td>USA</td>
<td>Chemical Manufacturing</td>
</tr>
<tr>
<td>Volvo</td>
<td>Sweden</td>
<td>Automotive Manufacturing</td>
</tr>
<tr>
<td>Wacker Chemie</td>
<td>Germany</td>
<td>Chemical Manufacturing</td>
</tr>
<tr>
<td>Xerox Corporation</td>
<td>USA</td>
<td>Computer Hardware Manufacturing</td>
</tr>
<tr>
<td>Yamaha Corporation</td>
<td>Japan</td>
<td>Consumer Products Manufacturing</td>
</tr>
</tbody>
</table>

“New ideas lie at the heart of innovation, but ideas alone are not enough. Innovation requires translating ideas into value-adding products and services. . . . Bridging the gap between an idea and its beneficial result is the crucial step in innovation. . . . Success will demand a greater ability to quickly close the gap.”

-Soumitra Dutta, author of Innovating at the Top2

Thomson Reuters 2011 Top 100 Global Innovator companies span the globe. The largest percentage is from North America: 40%. Asia accounts for 31% of the most innovative companies in the world and Europe for 29%. A breakout of the Top 100 companies by country is in Figure 1.

In Asia, Japan dominates with 27% of the representation. As a testament to Japan’s solid innovation foundation, it has representative companies in 12 of the 16 industries. The only other Asian nation present is South Korea, with 4% of the companies. The lack of companies from China is noteworthy and underscores the fact that although China is leading the world in patent volume, quantity does not equate to influence and quality.

There is much broader representation across Europe, with six European nations having one or more companies in the Top 100 Innovators list. France is the innovation leader in Europe, with 11 organizations spread across a number of industries. Interestingly, all of the Scientific Research entities in the list are from France: IFP Energies Nouvelles; CNRS, the French National Center for Scientific Research; and Commissariat à l’Énergie Atomique. Given the geographic footprint of France, its representation in the Top 100 Global Innovator list is impressive.

Another European surprise is the Principality of Liechtenstein. This country of approximately 62 square miles (just over 160 square kilometers) and approximately 35,000 people is also home to one of the most innovative companies in the world: privately owned machine manufacturer Hilti Corporation.
GEOGRAPHIC DISTRIBUTION OF TOP 100 GLOBAL INNOVATOR COMPANIES

FIGURE 1

Percent of Total

USA > JAPAN > FRANCE > SWEDEN > GERMANY > NETHERLANDS > S. KOREA > SWITZERLAND > LIECHENSTEIN
The industry breakouts for the Top 100 Global Innovator companies are shown in Figure 2. Manufacturing companies permeate the list, as compared to academic institutions, research laboratories or service-based organizations. The dominance of manufacturing is somewhat expected, as it is these companies that invent new products to bring to market – and they protect them with patents.

The most prevalent industry within the Top 100 list is Semiconductor & Electronic Component Manufacturing; 14 of the 100 companies are from this sector. Fifty percent of these innovation leaders are from North America and 43% are from Asia. The remaining company is from Europe. Figure 3 shows the geographic distribution of these companies.

In the Chemical Manufacturing sphere, the US continues to lead with 46% of the companies, followed by Europe with 31% and Asia with 23%. Figure 4 shows the geographic distribution of these companies.

The industry breakouts for the US, Europe and Japan are shown in Figures 5-7. In the US, the leading industry represented is Semiconductor & Electronic Component Manufacturing at 18%, followed by Chemical Manufacturing at 15%. The US leads the world in Semiconductor & Electronic Component Manufacturing with 50% of the Top 100 Global Innovators. The US has representation in 14 of the 16 industries, the two not represented are Automotive Manufacturing and Scientific Research.

For Europe, the top two industries are Machinery Manufacturing at 17% and Chemical Manufacturing at 13%. Europe leads the world in Machinery Manufacturing; 63% of the Top 100 Global Innovators in Machinery Manufacturing are in Europe, with more than half of them in Sweden.

In Asia, the predominant industry is Computer Hardware Manufacturing at 23% followed by Semiconductor & Electronic Component Manufacturing at 19%. Asia leads the world in Computer Hardware Manufacturing with 64% of the companies and in Automotive Manufacturing with 67% of them.
TOP 100 GLOBAL INNOVATOR COMPANY INDUSTRIES

FIGURE 2

Percent of Total

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

- PHARMACEUTICAL
- PETROLEUM
- SCIENTIFIC RESEARCH
- AUTOMOTIVE
- AEROSPACE
- COMPUTER SOFTWARE
- TRANSPORTATION EQUIPMENT
- MACHINERY
- INDUSTRIAL MANUFACTURING EQUIPMENT
- COMPUTER SOFTWARE
- HEALTHCARE PRODUCTS
- AUTOMOTIVE
- SCIENTIFIC RESEARCH
- PETROLEUM
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- COMPUTER HARDWARE
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRICAL PRODUCTS
- SEMICONDUCTOR & ELECTRONIC COMPONENTS
- CHEMICALS
- COMPUTER HARDWARE
- CONSUMER PRODUCTS
- MACHINERY
- TELECOMMUNICATION PRODUCTS
- ELECTRIC
GLOBAL DISTRIBUTION OF SEMICONDUCTOR & ELECTRONIC COMPONENT MANUFACTURERS
FIGURE 3
GLOBAL DISTRIBUTION OF CHEMICAL MANUFACTURERS

FIGURE 4

- USA
- JAPAN
- GERMANY
- FRANCE
- S. KOREA
INDUSTRY BREAKOUT - NORTH AMERICA

FIGURE 5

Percent of Total
FIGURE 6

INDUSTRY BREAKOUT - EUROPE
INDUSTRY BREAKOUT - ASIA

FIGURE 7

Percent of Total
CONCLUSION

Intellectual property is the bridge that connects innovation with economic growth. Without it there may be creativity but it won’t have sustained marketability.

The Thomson Reuters Top 100 Global Innovator companies are the world leaders in innovation. They exemplify the essence of innovation and drive inventions for economic growth. They encourage idea generation and the invention process. They have established systems for vetting their innovation funnels and determining which ideas are worthy of protection. They rigorously monitor prior art and the competitive landscape, and prosecute the best-of-the-best in terms of concept generation.

But, that is just the beginning. The Top 100 Global Innovator companies also look at innovation through a global lens. They determine the market potential of an invention and actively seek protection for it around the world. Their strategic rationale may differ, but they are one in the same when it comes to seeking and capitalizing on the global potential of their inventions.

Finally, they are viewed by their peers, competitors and others as making an impactful difference. Their inventions are oftentimes significantly cited by others and are seen as founding technologies in their respective areas.

Thomson Reuters congratulates and thanks the Top 100 Global Innovators for the spirit of innovation they foster in their organizations and their adherence to IP systems and the protection of intellectual rights.
ABOUT THOMSON REUTERS

Thomson Reuters is the world’s leading source of intelligent information for businesses and professionals. We combine industry expertise with innovative technology to deliver critical information to leading decision makers in the financial, legal, tax and accounting, healthcare and science and media markets, powered by the world’s most trusted news organization. With headquarters in New York and major operations in London and Eagan, Minnesota, Thomson Reuters employs more than 55,000 people and operates in over 100 countries. Thomson Reuters shares are listed on the Toronto and New York Stock Exchanges (symbol: TRI). For more information, go to www.thomsonreuters.com.

To find out more about IP Solutions from Thomson Reuters, go to ip.thomsonreuters.com.

Note to press:
To request further information, please contact:

John Roderick
J. Roderick, Inc.
+1.631 656 9736
john@jroderick.com

Laura Gaze
Thomson Reuters
+1.203 868 3340
laura.gaze@thomsonreuters.com

1001168

Copyright © 2011 Thomson Reuters